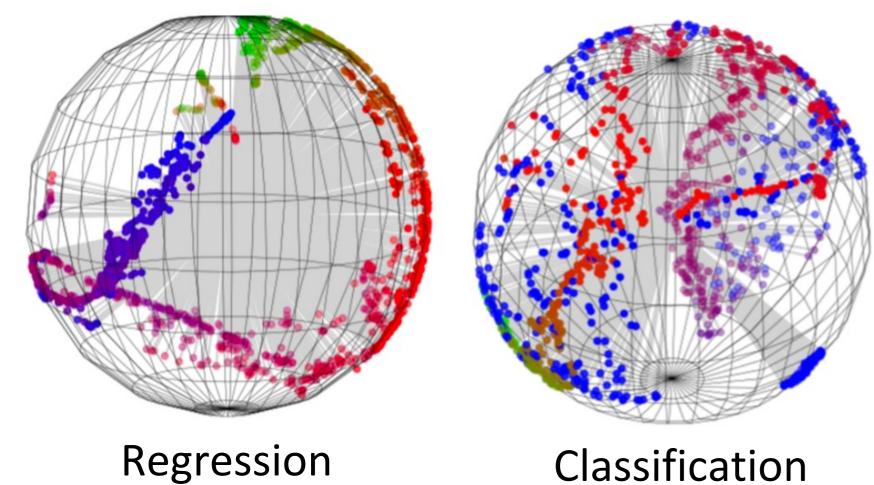




Github page

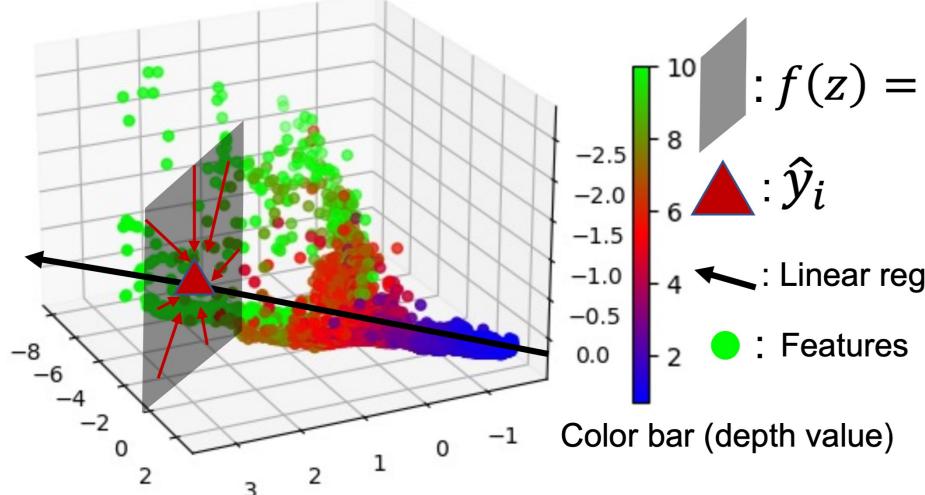
Project page

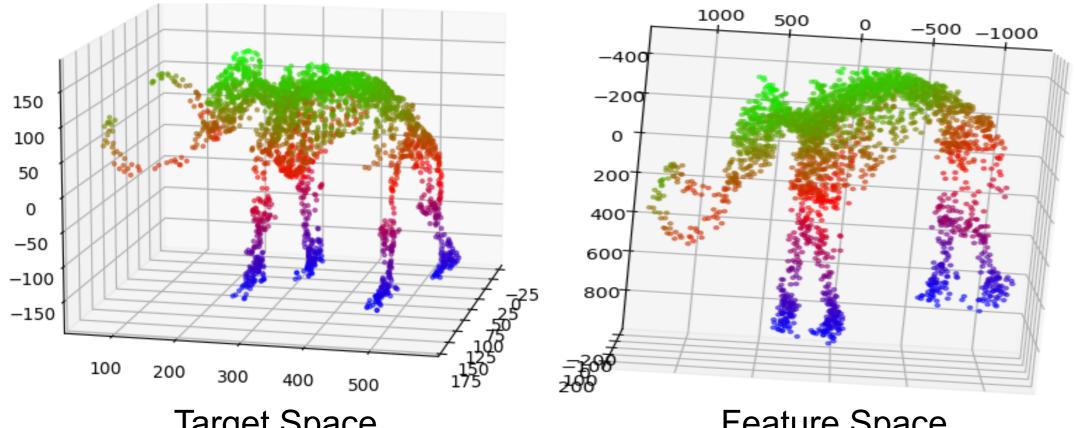
## Motivation



Theorem 1: Optimizing the Information Bottleneck  $\Rightarrow$ minimizing H(Z|Y) and H(Y|Z)**Classification**: disconnected H(Z|Y)Information **Regression**: connected Bottleneck The representation **topologies** of classification and H(Y|Z)regression are different Q: What topology (shape) the representations should have for effective regression? Method & Results  $f(z) = \hat{y}_i$ -2.5 • The  $k_{th}$  persistent Death \_ ['birth', 'death' 4 🔨 : Linear regressor of 'birth' and 'death'  $igcup [0, \alpha_1]$ intervals of the k 😑 : Features **(** $[0, \alpha_2]$ dimensional holes. Color bar (depth value) •  $edge_s$  : edges of the  $^{-1}$ Birth minimal spanning tree of S 'birth' and 'death' threshold Figure: Visualization of the feature space from depth estimation •  $PH_0(S)$  can be regarded as Lowering the intrinsic dimension results in a lower H(Z|Y), implying a higher generalization ability spanning tree of S **Enforcing topological similarity[1]:**  $L_{t} = ||Z(edge_{z}) - Y(edge_{z})||_{2}^{2} + ||Z(edge_{y}) - Y(edge_{y})||_{2}^{2}$ 50 -100-150100 300 400 (b) Regression  $+\mathcal{L}'_d$ (c) Regression  $+\mathcal{L}_d$ (a) Regression Target Space Feature Space Feature and target spaces are topologically similar, and Table 2. Quantitative comparison (MAE) on AgeDB. We report a latandand varia runs. **Bold** numbers enforcing such similarity is helpful Few  $\pm 0.31 \quad 13.63 \pm 0.43$  $13.61 \pm 0.32$  $\pm 0.49 \quad 13.28 \pm 0.73$  $\pm 0.05$  13.61  $\pm 0.50$ 

## Q: Why different topologies?





## Desirable representation

- Intrinsic dimension equals the target space.
- Topologically similar to the target space.

# Deep Regression Representation with Topology

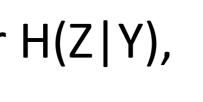
Shihao Zhang, Kenji Kawaguchi, Angela Yao National University of Singapore

| results as mean $\pm$ standard variance over 3 runs. <b>Bold</b> numbers |                 |               |               |                |  |  |  |  |
|--------------------------------------------------------------------------|-----------------|---------------|---------------|----------------|--|--|--|--|
| indicate the best performance.                                           |                 |               |               |                |  |  |  |  |
| Method                                                                   | ALL             | Many          | Med.          | Few            |  |  |  |  |
| Baseline                                                                 | $7.80\pm0.12$   | $6.80\pm0.06$ | $9.11\pm0.31$ | $13.63\pm0.43$ |  |  |  |  |
| + InfDrop                                                                | $8.04\pm0.14$   | $7.14\pm0.20$ | $9.10\pm0.71$ | $13.61\pm0.32$ |  |  |  |  |
| + OE                                                                     | $7.65 \pm 0.13$ | $6.72\pm0.09$ | $8.77\pm0.49$ | $13.28\pm0.73$ |  |  |  |  |
| $\mathcal{L}_d' \ +\mathcal{L}_d$                                        | $7.75\pm0.05$   | $6.80\pm0.11$ | $8.87\pm0.05$ | $13.61\pm0.50$ |  |  |  |  |
| $+\mathcal{L}_{d}$                                                       | $7.64\pm0.07$   | $6.82\pm0.07$ | $8.62\pm0.20$ | $12.79\pm0.65$ |  |  |  |  |

 $+\mathcal{L}_d + \mathcal{L}_t$ 

 $7.50 \pm 0.04$   $6.59 \pm 0.03$   $8.75 \pm 0.03$   $12.67 \pm 0.24$ 

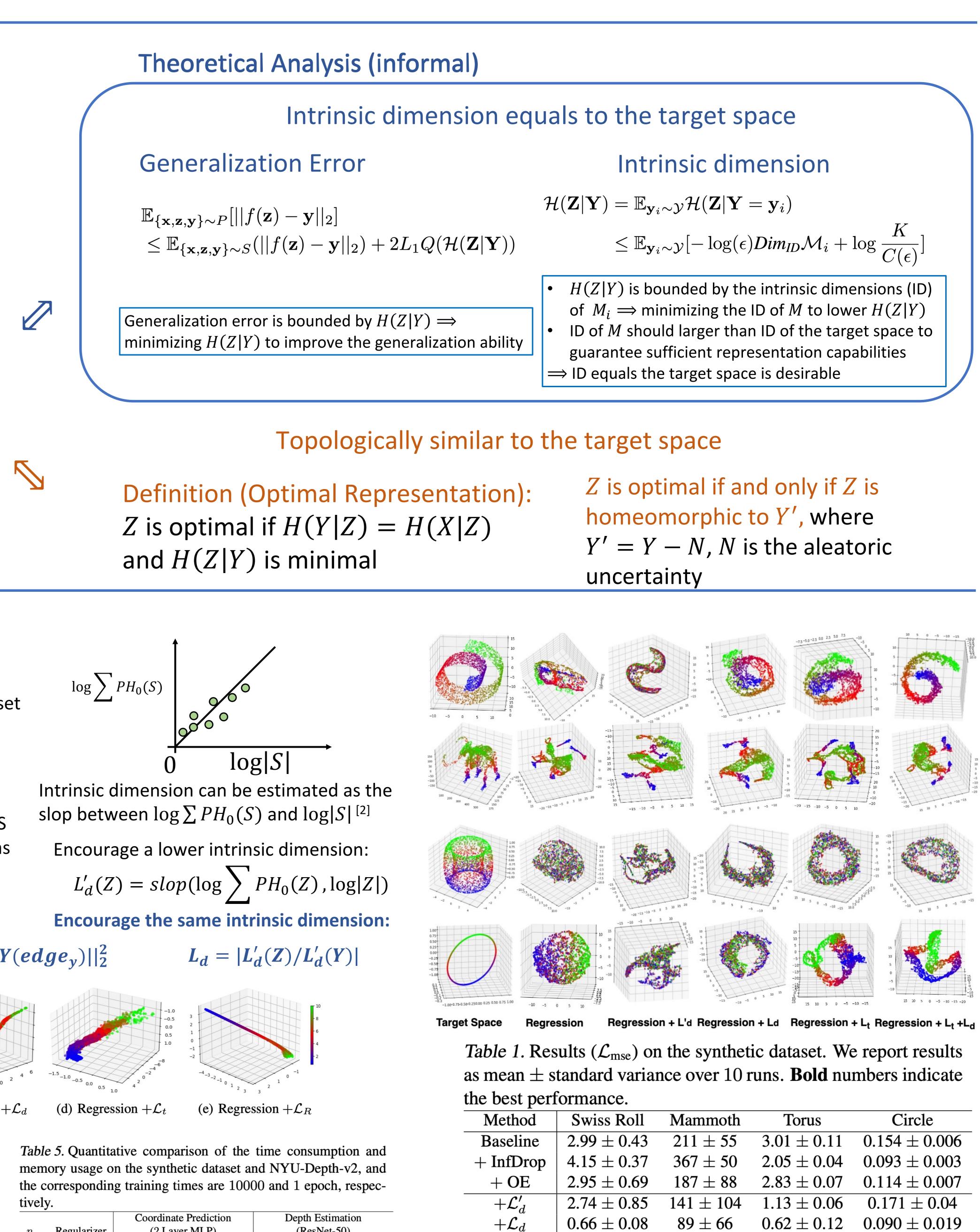
 $7.32 \pm 0.09$  6.50  $\pm$  0.15 8.38  $\pm$  0.11 12.18  $\pm$  0.38





- homology  $PH_k(S)$  is the set
- the length of the minimal





|       | Regularizer                     | Coordinate Prediction<br>(2 Layer MLP) |             | Depth Estimation |             |
|-------|---------------------------------|----------------------------------------|-------------|------------------|-------------|
| $n_m$ |                                 |                                        |             | (ResNet-50)      |             |
|       |                                 | Training(s)                            | Memory (MB) | Training(s)      | Memory (MB) |
| 0     | -                               | 8.88                                   | 959         | 1929             | 11821       |
| 100   | $\mathcal{L}_t$                 | 175.06                                 | 959         | 1942             | 11833       |
| 100   | $\mathcal{L}_d$                 | 439.68                                 | 973         | 1950             | 12211       |
| 100   | $\mathcal{L}_t + \mathcal{L}_d$ | 617.41                                 | 973         | 1980             | 12211       |
| 300   | $\mathcal{L}_t + \mathcal{L}_d$ | -                                      | -           | 2370             | 12211       |

References [1] Moor et al. Topological Autoencoders. ICML. 2021

 $+\mathcal{L}_t$ 

 $+\mathcal{L}_d+\mathcal{L}_t$ 



| Swiss Roll                        | Mammoth     | Torus                             | Circle                              |
|-----------------------------------|-------------|-----------------------------------|-------------------------------------|
| $2.99\pm0.43$                     | $211\pm55$  | $3.01\pm0.11$                     | $0.154\pm0.006$                     |
| $4.15\pm0.37$                     | $367\pm50$  | $2.05\pm0.04$                     | $0.093\pm0.003$                     |
| $2.95\pm0.69$                     | $187\pm88$  | $2.83\pm0.07$                     | $0.114 \pm 0.007$                   |
| $2.74\pm0.85$                     | $141\pm104$ | $1.13\pm0.06$                     | $0.171\pm0.04$                      |
| $0.66\pm0.08$                     | $89\pm 66$  | $0.62\pm0.12$                     | $0.090\pm0.019$                     |
| $1.83\pm0.70$                     | $80\pm 61$  | $0.95\pm0.05$                     | $0.036\pm0.004$                     |
| $\textbf{0.61} \pm \textbf{0.17}$ | $49 \pm 27$ | $\textbf{0.61} \pm \textbf{0.05}$ | $\textbf{0.013} \pm \textbf{0.008}$ |

[2] Birdal et al. Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks. NeurIPS. 2021