

Deep Regression Representation Learning with Topology

Shihao Zhang, Kenji Kawaguchi, Angela Yao

ICML 2024

Motivation

Classification

Regression

The representation topologies of classification and regression are different:

- Classification: disconnected
- **Regression**: connected

What topology (shape) the representations should have for effective regression?

Desirable representation

- Intrinsic dimension equals the target space.
- Topologically similar to the target space.

We arrive at this conclusion by establishing two connections: $H(Z|Y) \Leftrightarrow$ Intrinsic dimension $H(Z|Y), H(Y|Z) \Leftrightarrow$ Homeomorphism

Topologically similar to the target space

Definition (Optimal Representation): Z is optimal if H(Y|Z) = H(X|Z)and H(Z|Y) is minimal Z is optimal if and only if Z is homeomorphic to Y', where Y' = Y - N, N is the aleatoric uncertainty

Encouraging the Same Intrinsic Dimension

Lowering the intrinsic dimension results in a lower $H(Z|\hat{Y})$ (an approximation for the H(Z|Y)), implying a higher generalization ability.

Encouraging the Same Intrinsic Dimension

Intrinsic dimension can be estimated as the slop between $\log \sum PH_0(S)$ and $\log |S|^1$

Encourage a lower intrinsic dimension: $L'_d(Z) = slop(\log \sum PH_0(Z), \log |Z|)$ Encourage the same intrinsic dimension:

$$L_d = |L'_d(Z)/L'_d(Y)|$$

¹Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks, Birdal et al. NeurIPS. 2021

Enforcing Topological Similarity

Feature and target spaces are topologically similar, and enforcing such similarity is helpful.

Enforcing Topological Similarity

'birth' and 'death' threshold

- The k_{th} persistent homology PH_k(S) is the set of 'birth' and 'death' intervals of the k dimensional holes.
- Calculating *PH*₀(*S*) turn out to be find the minimal spanning tree.

Enforcing topological similarity:

 $L_{t} = ||Z(edge_{z}) - Y(edge_{z})||_{2}^{2} + ||Z(edge_{y}) - Y(edge_{y})||_{2}^{2}$

Method	Swiss Roll	Mammoth	Torus	Circle
Baseline	2.99 ± 0.43	211 ± 55	3.01 ± 0.11	0.154 ± 0.006
+ InfDrop	4.15 ± 0.37	367 ± 50	2.05 ± 0.04	0.093 ± 0.003
+ OE	2.95 ± 0.69	187 ± 88	2.83 ± 0.07	0.114 ± 0.007
$+\mathcal{L}_{d}^{\prime}$	2.74 ± 0.85	141 ± 104	1.13 ± 0.06	0.171 ± 0.04
$+\mathcal{L}_d$	0.66 ± 0.08	89 ± 66	0.62 ± 0.12	0.090 ± 0.019
$+\mathcal{L}_t$	1.83 ± 0.70	80 ± 61	0.95 ± 0.05	0.036 ± 0.004
$+\mathcal{L}_d+\mathcal{L}_t$	$\textbf{0.61} \pm \textbf{0.17}$	49 ± 27	$\textbf{0.61} \pm \textbf{0.05}$	$\textbf{0.013} \pm \textbf{0.008}$

Table 2. Quantitative comparison (MAE) on AgeDB. We report results as mean \pm standard variance over 3 runs. **Bold** numbers indicate the best performance.

Method	ALL	Many	Med.	Few
Baseline	7.80 ± 0.12	6.80 ± 0.06	9.11 ± 0.31	13.63 ± 0.43
+ InfDrop	8.04 ± 0.14	7.14 ± 0.20	9.10 ± 0.71	13.61 ± 0.32
+ OE	7.65 ± 0.13	6.72 ± 0.09	8.77 ± 0.49	13.28 ± 0.73
$+\mathcal{L}_d'$	7.75 ± 0.05	6.80 ± 0.11	8.87 ± 0.05	13.61 ± 0.50
$+\mathcal{L}_d$	7.64 ± 0.07	6.82 ± 0.07	8.62 ± 0.20	12.79 ± 0.65
$+\mathcal{L}_t$	7.50 ± 0.04	6.59 ± 0.03	8.75 ± 0.03	12.67 ± 0.24
$+\mathcal{L}_d+\mathcal{L}_t$	$\textbf{7.32} \pm \textbf{0.09}$	$\textbf{6.50} \pm \textbf{0.15}$	$\textbf{8.38} \pm \textbf{0.11}$	$\textbf{12.18} \pm \textbf{0.38}$

- A desirable representation
 - topologically similar to the target space
 - intrinsic dimension equal to the target space
- Optimizing the Information Bottleneck \Rightarrow minimizing H(Z|Y) and H(Y|Z)
 - *H*(*Y*|*Z*): encourages the representation *Z* to be informative about the target *Y*
 - H(Z|Y): can be thought of as noise, and upperbound the generalization error