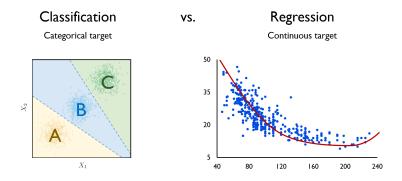
Improving Deep Regression with Ordinal Entropy


Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng, Angela Yao

April 9, 2023

Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

Machine Learning (ML)

Classification and regression are two fundamental tasks of ML.

 Figures adapted from Elements of Statistical Learning 2^{nd} Ed. by Hastie et al.
 $\square \Rightarrow \langle B \Rightarrow \langle \Xi \Rightarrow \langle \Xi \Rightarrow \rangle \equiv \langle O \rangle$

 Presented by Shihao Zhang; Supervised by Angela Yao
 Improving Deep Regression with Ordinal Entropy
 2/16

Background

Why Classification Outperforms Regression (not task specific) Conclusion & Future Works Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

Classification in Computer Vision Performs Better

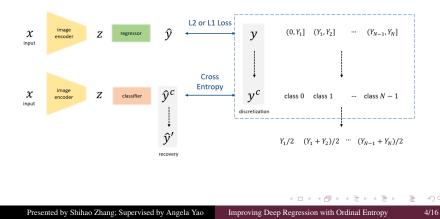
Counting

Depth Estimation

Others

イロト イポト イヨト

Pose estimation Optical flow Super-resolution ...


3/16

Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

Formulating Regression as a Classification Task

Disadvantages of formulating regression as a classification task:

- Introduce discretization errors.
- Lose ordinal relationship.

Background

Why Classification Outperforms Regression (not task specific) Conclusion & Future Works

Observation

Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

• □ ▶ • □ ▶ • □ ▶

Observation

Despite the disadvantages, **classification outperforms regression**, for a diverse set of regression problems.

Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

3

6/16

Why?

Classification and Regression in Computer Vision Formulating Regression as a Classification Task Why Classification Outperforms Regression (task specific)

・ ロ ト ・ 伊 ト ・ 三 ト ・

7/16

Why Classification Outperforms Regression

Task Specific Reasons:

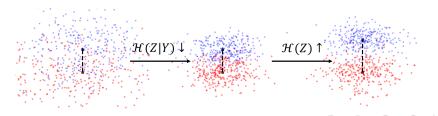
- Depth estimation: predicting depth range is easier
- Pose estimation: bias + problematic gradients
- Local counting: ambiguous input & ground truth labels

Research Problem

Anything more general that is not task specific?

Feature Space of Classification

Mutual Information ↑


Conditional Entropy \downarrow

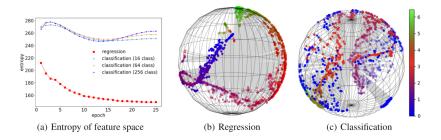
Intra-class feature distances \downarrow :

• \Rightarrow lower-entropy clusters, $\mathcal{H}(Z|Y) \downarrow$.

Inter-class feature distances \uparrow :

• \Rightarrow higher-entropy feature space, $\mathcal{H}(Z) \uparrow$.

Motivation


Yet, regression has no concept about class

• What the feature space of regression looks like?

不得下 不足下 不足

What Can We Do

Feature Space: Regression VS. Classification

We show that MSE loss is a proxy only for minimizing $\mathcal{H}(Z|Y)$.

• \Rightarrow Regression with MSE lags in its ability to maximize $\mathcal{I}(Z; Y)$ by learning high-entropy feature space.

What Can We Do

Regularizers to Increase Feature Entropy

Encourage a higher-entropy feature space in regression by minimizing the negative distances between feature centers \mathbf{z}_{c_i} :

$$\mathcal{L}'_{d} = -\frac{1}{M(M-1)} \underbrace{\sum_{i=1}^{M} \sum_{i \neq j} ||\mathbf{z}_{c_{i}} - \mathbf{z}_{c_{j}}||_{2}}_{\propto \mathcal{H}(Z)}, \quad (1)$$

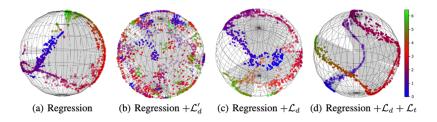
伺下 イヨト イヨ

What Can We Do

Regularizers to Increase Feature Entropy

 \mathcal{L}'_d may break the ordinality in the feature space. To preserve ordinality:

$$\mathcal{L}_{d} = -\frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{i \neq j} w_{ij} ||\mathbf{z}_{c_{i}} - \mathbf{z}_{c_{j}}||_{2}, \quad \text{where } w_{ij} = ||y_{i} - y_{j}||_{2}$$
(2)


To further minimize the conditional entropy $\mathcal{H}(Z|Y)$:

$$\mathcal{L}_{t} = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{z}_{i} - \mathbf{z}_{c_{i}}||_{2}.$$
(3)

不得下 イヨト イヨト

What Can We Do

Tradeoff in Entropy vs. Ordinality

- High entropy feature space is good for a higher $\mathcal{I}(Z, Y)$.
- Increasing entropy naively destroys ordinal relationships.
- Preserving ordinality again lowers entropy.

• □ ▶ • □ ▶ • □ ▶

Conclusion

- We show that regression with MSE lags in its ability to maximize $\mathcal{I}(Z, Y)$ by learning high-entropy features space.
- We design an ordinal entropy regularizer to learn high-entropy feature representations which preserve ordinality for regression.

Future Works

• Why not solve everything as classification?

イロト イ理ト イヨト イヨト

Thanks

イロト イポト イヨト イヨト

3